
16 CROSSTALK The Journal of Defense Software Engineering March 2003

To deliver superior quality, many
organizations have made commit-

ments to initiatives on the Software
Engineering Institute’s (SEI) Capability
Maturity Model® (CMM®), ISO 9001, or
Six Sigma. Each of these initiatives has
one thing in common: software inspec-
tions.

Managers are interested in knowing
the return on investment to be derived
from software process improvement
actions. The software inspection process
gathers some of the data needed to
determine this [1]. Software inspections
are structured to serve the needs of qual-
ity management in verifying that a soft-
ware artifact complies with its standard
of excellence for software engineering.
The focus is on verification, on doing
the job right. The software inspection is
a formal review held at the conclusion of
a life-cycle activity and serves as a quali-
ty gate with exit criteria for moving on to
subsequent activities [2].

The National Software Quality
Experiment (NSQE) is a mechanism for
obtaining core samples of software
product quality. The NSQE includes a
micro-level national database of product
quality populated by a continuous stream
of samples from industry, government,
and military services. The centerpiece of
the experiment is the software inspection
lab where data collection procedures,
product checklists, and participant
behaviors are packaged for operational
project use. The NSQE is providing
valuable insights on the practice of soft-

ware inspections through its database of
thousands of software inspection ses-
sions from dozens of organizations con-
taining tens of thousands of defects
along with the pertinent information
needed to pinpoint their root causes [3].

To review NSQE description and data
summaries, please visit the Web resource
listed in [4].

The model in this article for return

on investment bases the savings on the
cost avoidance associated with detecting
and correcting defects earlier rather than
later in the product evolution cycle. It is
defined as net savings divided by detection
cost, where net savings is cost avoidance less
cost to repair now; detection cost is the cost
of preparation effort and the cost of
conduct effort. Savings result from early
detection and correction, which avoids
the increased cost multiplier associated
with detection and correction of defects
later in the life cycle.

A major defect that leaks from devel-
opment to test may cost two to 10 times
more to detect and correct than if done
earlier. Some of these defects leak fur-
ther from test to customer use and may
cost an additional two to 10 times to
detect and correct. A minor defect may
cost an additional two to four times to
correct later. The defined measurements
collected in the software inspection lab
may be combined in complex ways to
form the derived metric for return on
investment. These involve an additional
cost multiplier, defect detection rate,
cost to repair, and detection cost.

Software Product
Engineering Method
The values for these complex parameters
revolve around the Software Product
Engineering (SPE) key process area
being practiced, which is a CMM Level 3
key process area. Three levels of
achievement of SPE are identified as fol-
lows:
1. Ad-hoc programming is character-

ized by a code-and-upload life cycle
and a hacker coding style. This is
common in low software process
maturity organizations, especially
those facing time-to-market
demands.

2. Structured software engineering
employs structured programming,
modular design, and defined pro-
gramming style, and pays close atten-
tion to establishing and maintaining
traceability among requirements,

Determining Return on Investment
Using Software Inspections

Don O’Neill
Consultant

This article examines the defined measurements used to form the derived metric for return on investment. These measurements
involve additional cost multiplier, defect detection rate, cost to repair, and detection cost. This article further examines the
behavior of these measurements and metrics for various software product-engineering styles using data collected in the National
Software Quality Experiment.

10

8

6

4

2

0

 Software Product Engineering Method

DSE SSE AHP

Additional Cost Multiplier

Major Defects

Minor Defects

M
ul

tip
lie

r

Figure 1: Additional Cost Multiplier

“The NSQE is providing
valuable insights on the

practice of software
inspections through its

database of thousands of
software inspection

sessions from dozens of
organizations containing

tens of thousands of
defects along with the
pertinent information

needed to pinpoint their
root causes.”

Determining Return on Investment Using Software Inspections

March 2003 www.stsc.hill.af.mil 17

specification, architecture, design,
code, and test artifacts. This is the
minimum expectation for CMM
Level 3 [5].

3. Disciplined software engineering is
more formal and might be patterned
after cleanroom software engineer-
ing, Personal Software Process, Team
Software Process, and extreme pro-
gramming techniques [6, 7, 8]. This is
the expectation for SEI CMM Level
4 and 5 organizations [5].

Additional Cost Multiplier
Since savings result from avoiding the
increased cost multiplier associated with
detection and correction of defects later
in the life cycle, the question of the cost
multiplier must be answered to deter-
mine the return on investment.

Some set the additional cost multipli-
er for finding and fixing a defect detect-
ed after delivery at 100 times earlier
detection [9]. Others have measured it
more precisely and found it to be 10
times more for each life-cycle activity.
IBM Rochester, Rochester, Minn., win-
ner of the Malcolm Baldrige National
Quality Award in 1990, reported that
defects leaking from code to test cost
nine times more to detect and correct,
and defects leaking from test to the field
cost 13 times more to detect and correct
[10].

Why Is There a Multiplier?
An example may help illustrate why a
leaked defect costs more. A code defect
that leaks into testing may require multi-
ple test executions to confirm the error
and additional executions to obtain
debug information. Once a leaked defect
has been detected, the producing pro-
grammer must put aside the task at hand,
refocus attention on correcting the
defect and confirming the correction,
and then return to the task at hand. The
corrected artifact must then be reinsert-
ed into the SPE or product release
pipeline and possibly into user opera-
tions.

Keep in mind that software changes
experience high defect rates. In addition,
the span of impact from defects intro-
duced during different activities of the
life cycle varies. The number of source
lines affected by a requirement defect
might exceed 100 lines; by a design
defect, 10 to 100 lines; by a coding
defect, less than 10 lines; and by a cleri-
cal defect, one line.

What Is the Multiplier?
It is reasonable to expect the additional

cost multiplier to be linked to the SPE
method practiced. Figure 1 portrays the
additional cost multiplier by SPE
method.
1. Ad-hoc programming (AHP) is likely

to experience a multiplier of eight to
10 times in detecting and correcting
major defects in spaghetti-bowl cod-
ing that lacks order and consistency.
The multiplier for minor defects is
likely to be four times.

2. Structured software engineering
(SSE) is likely to experience a multi-
plier of five to seven times in detect-
ing and correcting major defects in
the production of well structured,
consistently recorded components
with organized relationships among

modules and traceability among life-
cycle artifacts. The multiplier for
minor defects is likely to be three
times.

3. Disciplined software engineering
(DSE) with its formal focus on qual-
ity may experience a multiplier of
two to four times in detecting and
correcting major defects. The multi-
plier for minor defects is likely to be
two times.

What Effect Does the
Multiplier Have?
In summary, an undetected major defect
that leaks to the next phase of the life
cycle may cost two to 10 times more to

1.0

0.8

0.6

0.4

Software Product Engineering Method

DSE SSE AHP

Development Detection (DD)

R
at

e

Figure 3: Development Detection

Defect Leakage Model

Development

DD

DL Test

TD

Customer UseTL

DD - Development Detection
DL - Development Leakage
TD - Test Detection
TL - Test Leakage

Figure 2: Defect Leakage Model

0.25
0.2

0.15
0.1

0.05
0

Software Product Engineering Method

DSE SSE AHP

Test Leakage (TL)

R
at

e

Figure 4: Test Leakage

Quality Software

18 CROSSTALK The Journal of Defense Software Engineering March 2003

detect and correct. A minor defect may
cost two to four times more to detect
and correct. The resulting net savings
then may be up to nine times for major
defects and up to three times for minor
defects.

Defect Detection Rate
The model shown in Figure 2 illustrates
that defects are detected in development
(DD) and test (TD), defects leak from
development (DL), and defects leak
from test (TL). Defect detection rate
equals the number of defects detected
divided by the number of defects pres-
ent.

It is reasonable to expect the defect

detection rate to be linked to the SPE
method practiced, including the software
inspection process followed. Figures 3
and 4 illustrate DD and TL using empir-
ically derived values for the defect leak-
age model factors of each SPE method.
While the defect DD rates are based on
the results of the NSQE, the expected
TD uses a notional value in order to
complete the analysis.
1. AHP is likely to experience a defect

DD rate in the range of 0.50 to 0.65.
While the TL depends on the ade-
quacy of the test process, AHP is
likely to experience TL in the range
of 0.175 to 0.25 based on an expect-
ed TD of 0.50.

2. The SSE is likely to experience a
defect DD rate in the range of 0.70
to 0.80, and a TL in the range of 0.1
to 0.15 based on an expected TD of
0.50.

3. DSE may experience a defect DD
rate in the range of 0.85 to 0.95, and
a TL in the range of 0.025 to 0.075
based on an expected TD of 0.50 [4].

Cost to Repair
The cost to repair a defect detected in
the life-cycle activity in which it was
inserted depends on the SPE method
practiced and the business environment
in which it is operating. This must be
supplied by the organization based on its
actual cost history and the superior
knowledge of its personnel.

In determining the cost to repair, the
organization needs to obtain this cost-
by-defect type. During the software
inspection lab session, each detected
defect is assigned a type, including inter-
face, data, logic, input/output, perform-
ance, functionality, human factors, stan-
dards, documentation, syntax, maintain-
ability, and others. The defect type distri-
bution revealed by the NSQE is shown
in Figure 5 [3, 11, 12].

For purposes of the software inspec-
tions’ return-on-investment analysis, the
cost-to-repair factor is included in the
expression for net savings discussed
later. For analysis here, the cost to repair
is set at one hour for a major defect and
one hour for a minor defect.

Major defects are those that affect
execution; minor defects do not affect
execution but may still be important.
Some practitioners mistakenly assign a
major classification to defects that
require extensive rework, and a minor
classification to defects that require little
rework. When this mistake is made, the
major rework metric will systematically
exceed the minor rework metric.

In actual practice, as measured by the
NSQE during the past 10 years, certain
major defects such as eliminating magic
numbers or inserting a when others clause
require one or two line changes in the
code. Also, some minor defects such as
lack of traceability or adding prologue
and version history commentary may
have more pervasive impact.

During software inspections, many
defects are detected; many are trivial and
require little cost-to-repair effort. Others
may be more complex and require sub-
stantial effort. Where the organization
has superior knowledge of the cost-to-
repair metric, it should use that informa-

50

40

30

20

10

0

Software Product Engineering
DSE SSE AHP

Defects Inserted

Major

Minor

D
ef

ec
ts

Figure 6: Defects Inserted Per Thousand Lines

50.00

40.00

30.00

20.00

10.00

0.00

Percent of
Defect Types

National Software Quality Experiment: 1992-2001

In
te

rfa
ce

Da
ta

Lo
gi

c

I/O
Pe

rfo
rm

an
ce

Fu
nc

tio
na

lity

Hu
m

an
 R

es
ou

rc
es

St
an

da
rd

s
Do

cu
m

en
ta

tio
n

Sy
nt

ax

Te
st

 E
nv

iro
nm

en
t

Te
st

 C
ov

er
ag

e
M

ai
nt

ai
na

bi
lity

O
th

er

P
er

ce
nt

Figure 5: Defect Type Distribution

Determining Return on Investment Using Software Inspections

March 2003 www.stsc.hill.af.mil 19

tion. Where the organization lacks meas-
ured results, using one hour for cost to
repair is an initial value that many have
found valid.

Defect Detection Cost
The cost of defect detection includes the
participants’ efforts to prepare and con-
duct the software inspection. Time to
conduct the inspection includes the actu-
al physical time consumed by the soft-
ware inspection meeting. Effort to con-
duct the inspection includes the actual
time it takes to complete the inspection
multiplied by the number of partici-
pants. Factors used to determine detec-
tion cost include the size of the artifact
being inspected, the number of defects
inserted, and the relationship between
the effort to prepare and conduct the
inspection.

It is reasonable to expect the defect
detection cost to be linked to the SPE
method practiced, including the software
inspection process followed. Figure 6
illustrates the following defect insertion
rates by the SPE method.
1. AHP may experience a preparation

effort divided by a conduct effort
ratio of approximately 0.60 in
inspecting artifacts of 400 to 600
lines of code, as experienced by
CMM Level 1 organizations in the
NSQE [6, 8, 10]. These organizations
may experience a defect insertion rate
of 40 to 60 defects per thousand
lines of code.

2. SSE may experience a preparation
effort divided by a conduct effort
ratio of approximately 0.80 in
inspecting artifacts of 200 to 400
lines of code, as experienced by
CMM Level 3 organizations in the
NSQE [6, 8, 10]. These organizations
may experience a defect insertion rate
of 20 to 30 defects per thousand
lines of code.

3. DSE may experience a preparation
effort divided by a conduct effort
ratio of approximately 1.0 in inspect-
ing artifacts of less than 200 lines of
code. These organizations may expe-
rience a defect insertion rate of 10 to
15 defects per thousand lines of
code.

Reasoning About ROI
Software inspections’ return on invest-
ment is equal to net savings divided by
detection cost. Evaluating the following
expression assists in reasoning about
return on investment:

ROI = Net Savings/Detection Cost

Reasoning About Net Savings
Net savings is equal to cost avoidance
minus cost to repair now. Evaluating the
following expression assists in reasoning
about net savings:

Net Savings =
Cost Avoidance - Cost to Repair

Now

Cost avoidance results from avoiding
the higher costs that occur from deferred
detection and correction. The additional
cost multiplier comes into play in the fol-
lowing ways:
• M1 is the additional cost-to-repair

multiplier for development to test
major defect leakage.

• M2 is the additional cost-to-repair
multiplier for test to customer-use
major defect leakage.

• M3 is the additional cost-to-repair
multiplier for minor defect leakage.

Evaluating the following expression
assists in reasoning about cost avoid-
ance:

Cost Avoidance =
Major Defects x {(M1 x DD) + (M1 x

DD) x (M2 x TL) x C1} + Minor
Defects x M3

The cost to repair now, simply the cost
of defect correction, is subtracted from
cost avoidance to yield net savings.
Evaluating the following expression
assists in reasoning about net savings:

Net Savings = Major Defects x {(M1
x DD) + (M1 x DD) x (M2 x TL) x C1 -

C1} + Minor Defects x (M3 - C2)

Simplifying the expression results in the
following:

Net Savings =
Major Defects x {C1 x [(M1 x DD) x
(1 + (M2 x TL))] - 1} + Minor Defects

x (M3 - C2)
Where:
• M1: (2 - 10) Additional Cost-to-

Repair Multiplier for Development to
Test Major Defect Leakage.

• M2: (2 - 10) Additional Cost-to-
Repair Multiplier for Test to
Customer Use Major Defect Leakage.

• M3: (2 - 4) Additional Cost to Repair
for Minor Defect Leakage.

• DD: (0.5 - 0.95) Defect Detection
Rate for Development to Test.

• TL: (0.05 - 0.5) TL Rate for Test to
Customer Use.

• C1: Average Cost to Repair Major

Defect (in hours of effort).
• C2: Average Cost to Repair Minor

Defect (in hours of effort).

Reasoning About Detection
Cost
Detection cost is equal to preparation
effort plus conduct effort. Evaluating
the following expression assists in rea-
soning about detection cost:

Detection Cost =
Preparation Effort + Conduct Effort

Preparation effort is the total minutes
of preparation effort. Conduct effort is
the minutes of conduct time multiplied
by the number of participants.
Substituting the resulting expression is
the following:

Detection Cost =
{Minutes of Preparation Effort +

(Minutes of Conduct Time x
Participants)}/60

Where:
• Participants: (4-6) Number of partic-

ipants.
• 60 minutes per hour.

A Worked Example
The return on investment is determined
by using the expression for net savings
specified above and setting the parame-
ters for cost-to-repair multiplier, defect
detection, and defect leakage. For exam-
ple, to determine the expression for
return on investment to be used in a
project spreadsheet, the following exam-
ple is offered:
1. Setting the parameters: M1=5,

M2=10, M3=2, DD=0.6, TL=0.25,
C1=1, and C2=1.

2. Using the expression:

Net Savings = Major Defects x
{(M1 x DD) + (M1 x DD) x (M2 x
TL) x C1 - C1} + Minor Defects x
(M3 - 1)

3. Substituting for the values of the
worked example:

Net Savings = Major Defects x
{(5 x .6) + (5 x .6) x (10 x .25) x
1- 1} + Minor Defects x (2-1)

4. The following expression for Net
Savings results:

Net Savings = 9.5 x Major Defects +
Minor Defects

The result of the worked example is

Quality Software

20 CROSSTALK The Journal of Defense Software Engineering March 2003

a simplified expression for net savings of
the type used to derive the return-on-
investment metric in the NSQE. Figure 7
illustrates the range of practice for
return on investment.

Selecting Parameter Values
Where an organization possesses superi-
or knowledge of its software operation,
it should utilize the parameter values that
best reflect this understanding.
Candidate parameter values for each
SPE method are shown in Table 1 for
DSE, SSE, and AHP.

Computing Return on
Investment
Software process improvement goals
involve both cost and quality. The

achievement of these goals varies
according to the SPE method practiced,
and these variations are illustrated in the
application of the selected parameter
values (see Table 2). AHP practitioners
derive substantial net savings and return
on investment, but a high incidence of
defect leakage into customer use. The
SSE practitioners experience attractive
net savings and return on investment,
and a reduced defect leakage into cus-
tomer use. DSE practitioners barely
recoup the investment but achieve a very
low incidence of defect leakage into cus-
tomer use.

Transition From Cost to
Quality
In using software inspections, the goals

vary with the SPE method used, transi-
tioning from cost to quality.

By necessity, the focus of AHP prac-
titioners is on reducing cost by detecting
as many defects as possible. With 40 to
60 defects inserted per thousand lines of
code, a defect detection rate of 0.5 to
0.65, and an additional cost multiplier of
eight to 10, the result is a net savings of
234.8 to 285 labor hours and a defect
leakage expectation of 8.75 to 12.5 per
thousand lines of code, numbers that
promote a focus on cost. For this group,
finding defects is like finding free money,
and there are always more defects to find;
however, managers struggle to meet cost
and schedule commitments.

The SSE focus is split between reduc-
ing cost and improving quality. With 20
to 30 defects inserted per thousand lines
of code, a defect detection rate of 0.70
to 0.80, and an additional cost multiplier
of five to seven, the result is a net savings
of 65 to 85.23 labor hours and a defect
leakage expectation of 2.5 to 3.75 per
thousand lines of code, numbers that
promote an attraction to both goals. For
this group, there is constant dithering
between cost and quality.

Without question, the focus of DSE
practitioners is on eliminating every
possible defect even if defect detection
costs exceed net savings and the return
on investment falls below the break
even point. With 10 to 15 defects insert-
ed per thousand lines of code, a defect
detection rate of 0.85 to 0.95, and an
additional cost multiplier of two to
four, the result is a net savings of 12.49
to 18.55 labor hours and a defect leak-
age expectation of 0.3125 to 0.9375 per
thousand lines of code, numbers that
promote a focus on quality. For this
group, every practitioner is riveted on
achieving perfection.

Summary
In studying the issues associated with
the new realities of the workplace and
the new software engineering responses
to the issues, the answer lies in first
understanding what the enterprise is
trying to do, and then in how the enter-
prise does it.

What the enterprise is trying to do
revolves around the management of
commitments and the drive toward
product perfection. The management
of commitments is primarily associated
with time to market but also perform-
ance to budget. The drive toward prod-
uct perfection is associated with satisfy-
ing and delighting the customer with a
continuous stream of the right capabil-

DD M1 TL M2 M3 Net
Savings

Detection
Cost

ROI
Per K

Leaks

DSE

0.95 2 0.025 2 2 12.49 16.33 0.76 0.3125

0.90 3 0.050 3 2 15.26 16.33 0.93 0.6250

Disciplined
Software
Engineering

0.85 4 0.075 4 2 18.55 16.33 1.14 0.9375

SSE

0.80 5 0.100 5 3 65.00 14.67 4.43 2.5000

0.75 6 0.125 6 3 74.38 14.67 5.07 3.1250

Structured
Software
Engineering

0.70 7 0.150 7 3 85.23 14.67 5.81 3.7500

AHP

0.65 8 0.175 8 4 234.80 13.00 18.06 8.7500
Ad Hoc
Programming 0.60 9 0.200 9 4 261.20 13.00 20.09 10.0000

0.55 10 0.225 10 4 288.75 13.00 22.21 11.2500

0.50 10 0.250 10 4 285.00 13.00 21.92 12.5000

Table 2: Computing Return on Investment

M1 M2 M3 Major
Per K

Minor
Per K DD TL Prep

Min
Conduct

Min Participants

DSE 2-4 2-4 2 2.5 10 0.95-0.85 0.025-0.0075 500 120 4

SSE 5-7 5-7 3 5 20 0.70-0.80 0.075-0.150 400 120 4

AHP 8-10 8-10 4 10 40 0.50-0.65 0.175-0.250 300 120 4

Table 1: Candidate Parameter Values

10

8

6

4

2

0

National Software Quality Experiment

Return On Investment
S

av
in

gs
/C

os
t

Figure 7: Return on Investment

Determining Return on Investment Using Software Inspections

March 2003 www.stsc.hill.af.mil 21

ities and features packaged in a defect-
free container.

How the enterprise does this
revolves around its software product
engineering practice. The three modes
of practice in software product engi-
neering include AHP, SSE, and DSE.

What is actually occurring is a com-
petition among stresses, not all of
which can be satisfied. In reasoning
about new software engineering, it is
important to explicitly acknowledge
that choices must be made. The drive
toward perfection clashes with the drive
to achieve time to market. In the short-
term environment of today, the suc-
cessful enterprise makes the strategic
selection and accepts any collateral
damage.

When an organization has superior
knowledge of the parameter values for
software inspections return on invest-
ment, it is able to derive its own return-
on-investment metric. To perform this
computation, simply visit the tool at
<http://members.aol.com/ONeillDon
/nsqe-roi.html>.◆

References
1. McGibbon, T. “A Business Case for

Software Process Improvement.”
Rome Laboratory DACS Report, 30
Sept. 1996.

2. O’Neill, Don. “Peer Reviews.”
Encyclopedia of Software Engineer-
ing. Wiley Publishing, Inc., Jan.
2002.

3. O’Neill, Don. “National Software
Quality Experiment: A Lesson in
Measurement 1992-1997.” Cross-
Talk 11.12 (Dec. 1998)
<www.stsc.hi l l .af.mi l/crossta lk

/ f r a m e s . a s p ? u r i = 1 9 9 8
/12/oneill.asp>.

4. O’Neill, Don. National Software
Quality Experiment Description and
Data Summaries <http://members.
aol.com/ONeillDon/nsqe-results
.html>.

5. Paulk, Mark C. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Reading, MA: Addison-Wesley,
1995: 270-276.

6. Prowell, Stacy J., Carmen J.
Trammell, Richard C. Linger, and
Jesse H. Poore. Cleanroom Software
Engineering: Technology and
Process. Addison Wesley Longman,
1999: 17, 33-90.

7. Humphrey, Watts. Introduction to
the Personal Software Process.
Reading, MA: Addison-Wesley,
1997.

8. Wells, J. Donovan <www.extreme
programming.org>.

9. Basili, Vic, and Barry Boehm. “Top
Ten Defect Reduction List.” IEEE
Software Jan. 2001.

10. Lindner, Richard J., and D. Tudahl.
Software Development at a Baldrige
Winner. Proc. of ELECTRO ’94,
Boston, MA, 12 May 1994: 167-180.

11. O'Neill, Don. “National Software
Quality Experiment: Results 1992-
1999.” Software Technology Con-
ference, Salt Lake City, UT, 1995,
1996, and 2000.

12. O’Neill, Don. National Software
Quality Experiment: A Lesson in
Measurement 1992-1997. First
International Software Assurance
Certification Conference. Chantilly,
VA, 1 Mar. 1999: 1-14.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF.

AUG2002 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SOFTWARE DEV.

NOV2002 " PUBLISHER’S CHOICE

DEC2002 " YEAR OF ENG. AND SCI.

JAN2003 " BACK TO BASICS

FEB2003 " PROGRAMMING LANGUAGES

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

About the Author

Don O’Neill is a 43-
year veteran software
engineering manager
and technologist cur-
rently serving as an
independent consult-

ant. He conducts defined programs for
managing strategic software improve-
ment, including implementing an orga-
nizational software inspections pro-
cess, directing the National Software
Quality Experiment, implementing
software risk management on the proj-
ect, conducting the Project Suite Key
Process Area Defined Program, and
conducting Global Software Compet-
itiveness Assessments. O’Neill is a

founding member of the Washington,
D.C.-based Software Process Improve-
ment Network and the National
Software Council and serves as the
executive vice president of the Center
for National Software Studies. He has
a bachelor’s of science degree in math-
ematics form Dickinson College, and
has completed a three-year residency at
Carnegie Mellon University’s Software
Engineering Institute.

9305 Kobe Way
Montgomery Village, MD 20886
Phone: (301) 990-0377
E-mail: oneilldon@aol.com

